Что Такое Качество Измерений?

Что Такое Качество Измерений
Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений. Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным.

  • Точность количественно оценивают обратной величиной модуля относительной погрешности.
  • Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.
  • Достоверность измерений характеризует степень доверия к результатам измерений.
  • Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики.

Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ. Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

  1. Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.
  2. Сходимость измерений отражает влияние случайных погрешностей.
  3. Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:

неверная настройка средства измерений или смещение уровня настройки во время эксплуатации; неверная установка объекта измерения на измерительную позицию; ошибки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений; внешние воздействия на средство и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.п.); свойства измеряемого объекта; квалификация и состояние оператора.

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.

Что такое правильность измерений?

Правильность измерений – это близость среднего арифметического бесконечно большого числа повторно измеренных значений величины к опорному значению величины. Правильность измерений не является величиной и поэтому не может быть выражена численно, однако соответствующие показатели приведены в ISO 5725.

Каким образом обеспечивается качество результатов измерений?

Правильность результата измерения обеспечивается совпадением среднего значения измерений со значением измеряемой величины. Значение Х — величина случайная, поправка не является случайной, она характеризует относительную погрешность измерения.

Чем характеризуется точность измерений?

То́чность измере́ний, точность результата измерения — близость измеренного значения к истинному значению измеряемой величины, Точность измерений описывает качество измерений в целом, объединяя понятия правильность измерений и прецизионность измерений,

Как погрешность характеризует качество измерения?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

Это отклонение принято называть ошибкой измерения, Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов, На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %. Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Читайте также:  Как Выражается Точность Измерений?

Каковы основные принципы измерения?

Измере́ние — совокупность действий для определения отношения одной (измеряемой) величины к другой однородной величине, принятой всеми участниками за единицу, хранящуюся в техническом средстве ( средстве измерений ). Числовым значением измеряемой величины называется число, получившееся в результате измерения.

  • Принцип измерений — физическое явление или эффект, положенный в основу измерений.
  • Метод измерений — приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность или неопределённость, Примеры измерений:

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов,

Что представляет собой средство измерений?

Сре́дство измере́ний — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Что отражает смещение измерений?

смещение, систематическая погрешность 3.1.11 смещение, систематическая погрешность (bias): Разность между математическим ожиданием результатов наблюдений и истинным, или (в его отсутствие) принятым опорным значением. Примечание 1 — Смещение характеризует систематическую ошибку или погрешность в противоположность случайным ошибке или погрешности.

  • Смещение может иметь одну или несколько составляющих.
  • Большее систематическое отклонение от истинного или принятого опорного значения соответствует большему значению смещения.
  • Примечание 2 — Смещение средства измерений обычно оценивают на основе среднего арифметического погрешностей в показаниях средства измерения, найденных по соответствующему количеству повторных измерений.

Погрешность показаний средства измерений — отклонение измеренного значения входной величины от ее истинного значения. Словарь-справочник терминов нормативно-технической документации, academic.ru,2015,

Как оценить ошибку измерений?

1.1 Результат измерения — Рассмотрим простейший пример: измерение длины стержня с помощью линейки. Линейка проградуирована производителем с помощью некоторого эталона длины — таким образом, сравнивая длину стержня с ценой деления линейки, мы выполняем косвенное сравнение с общепринятым стандартным эталоном.

  1. Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат x = x изм,
  2. Можно ли утверждать, что x изм — это длина стержня? Во-первых, значение x не может быть задано точно, хотя бы потому, что оно обязательно округлено до некоторой значащей цифры: если линейка «обычная», то у неё есть цена деления ; а если линейка, к примеру, «лазерная» — у неё высвечивается конечное число значащих цифр на дисплее.
Читайте также:  Что Настоящий Федеральный Закон Регулирует?

Во-вторых, мы никак не можем быть уверенны, что длина стержня на самом деле такова хотя бы с точностью до ошибки округления. Действительно, мы могли приложить линейку не вполне ровно; сама линейка могла быть изготовлена не вполне точно; стержень может быть не идеально цилиндрическим и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной точности измерения, теряет смысл само понятие «длины стержня». Ведь на масштабах атомов у стержня нет чётких границ, а значит говорить о его геометрических размерах в таком случае крайне затруднительно! Итак, из нашего примера видно, что никакое физическое измерение не может быть произведено абсолютно точно, то есть у любого измерения есть погрешность,

Замечание. Также используют эквивалентный термин ошибка измерения (от англ. error). Подчеркнём, что смысл этого термина отличается от общеупотребительного бытового: если физик говорит «в измерении есть ошибка», — это не означает, что оно неправильно и его надо переделать.

  • Имеется ввиду лишь, что это измерение неточно, то есть имеет погрешность,
  • Количественно погрешность можно было бы определить как разность между измеренным и «истинным» значением длины стержня: δ ⁢ x = x изм — x ист,
  • Однако на практике такое определение использовать нельзя: во-первых, из-за неизбежного наличия погрешностей «истинное» значение измерить невозможно, и во-вторых, само «истинное» значение может отличаться в разных измерениях (например, стержень неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).

Поэтому говорят обычно об оценке погрешности. Об измеренной величине также часто говорят как об оценке, подчеркивая, что эта величина не точна и зависит не только от физических свойств исследуемого объекта, но и от процедуры измерения. Замечание. Термин оценка имеет и более формальное значение.

Чем отличается погрешность от точности?

Погрешность и точность — Часто понятия погрешность и точность рассматриваются как синонимы. Однако, эти термины имеют совершенно различные значения. Погрешность показывает, насколько близко измеренное значение к его реальной величине, то есть отклонение между измеренным и фактическим значением.

  • Точность относится к случайному разбросу измеряемых величин.
  • Когда мы проводим некоторое число измерений до момента стабилизации напряжения или же какого-то другого параметра, то в измеренных значениях будет наблюдаться некоторая вариация.
  • Это вызвано тепловым шумом в измерительной цепи измерительного оборудования и измерительной установки.

Ниже, на левом графике показаны эти изменения. Что Такое Качество Измерений Определения неопределенностей. Слева — серия измерений. Справа — значения в виде гистограммы.

Как оценить точность измерений?

1. Оценку точности измерений производят — предварительно до начала измерений путем обработки результатов специально выполненных наблюдений; — после окончания измерений путем обработки результатов наблюдений, выполненных в процессе этих измерений.2. Для оценки точности измерений используют многократные наблюдения параметра в одном из установленных сечений (мест) или двойные наблюдения параметра в разных сечениях (местах) одного или нескольких объектов измерений.

Общее число наблюдений М, необходимое для оценки точности результата измерений, составляет: для предварительной оценки — 20; для оценки точности выполненных измерений — не менее 6. Для уменьшения влияния систематических погрешностей измерения выполняют в соответствии с требованиями настоящего стандарта (ГОСТ 26433.0-85): Наблюдения производят в прямом и обратном направлениях, на разных участках шкалы отсчетного устройства, меняя установку и настройку прибора и соблюдая другие приемы, указанные в инструкции по эксплуатации на средства измерения.

При этом должны быть соблюдены условия равноточности наблюдений (выполнение наблюдений одним наблюдателем, тем же методом, с помощью одного и того же прибора и в одинаковых условиях). Перед началом наблюдений средства измерений следует выдерживать на месте измерений до выравнивания температур этих средств и окружающей среды.3. Таблица 1. Среднюю квадратическую погрешность измерения при многократных наблюдениях параметра определяют по формуле Если при измерениях используются средства и методы, для которых из специально выполненных ранее измерений или из эксплуатационной документации установлена средняя квадратическая погрешность наблюдения, то действительную погрешность измерения определяют по формуле 5. Действительную погрешность результата измерения при двойных наблюдениях параметра в одном из установленных сечений (местах) оценивают по формуле где вычисляемая величина — это абсолютное значение остаточной систематической погрешности, численное значение которой определено из обработки ряда двойных наблюдений.

Читайте также:  Чем Характеризуется Точность Измерений?

В чем измеряется погрешность?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины. Инструментальные и методические погрешности. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

  • Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается.
  • Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.
  • Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.