Как Определить Погрешность Измерения Прибора?

Как Определить Погрешность Измерения Прибора
Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе. Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована ( эталоны ).

расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой. Рис. \(1\). Линейка и брусок Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет \(1\) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между \(9\) и \(10\) метками.

  • У нас есть два варианта определения длины этого бруска. \(1\).
  • Если мы заявим, что длина бруска — \(9\) сантиметров, то недостаток длины от истинной составит более половины сантиметра (\(0,5\) см \(= 5\) мм). \(2\).
  • Если мы заявим, что длина бруска — \(10\) сантиметров, то избыток длины от истинной составит менее половины сантиметра (\(0,5\) см \(= 5\) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного. Погрешность измерительного прибора равна цене деления прибора. Для первой линейки цена деления составляет \(1\) сантиметр. Значит, погрешность этой линейки \(1\) см. Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. Рис. \(2\). Деревянная линейка Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления \(0,1\) мм и \(0,05\) мм, Рис. \(3\). Штангенциркуль На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений. Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Что такое погрешность измерительного прибора?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

Это отклонение принято называть ошибкой измерения, Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов, На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

  • Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
  • Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Как оценить погрешность измерения?

1.1 Результат измерения — Рассмотрим простейший пример: измерение длины стержня с помощью линейки. Линейка проградуирована производителем с помощью некоторого эталона длины — таким образом, сравнивая длину стержня с ценой деления линейки, мы выполняем косвенное сравнение с общепринятым стандартным эталоном.

  1. Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат x = x изм,
  2. Можно ли утверждать, что x изм — это длина стержня? Во-первых, значение x не может быть задано точно, хотя бы потому, что оно обязательно округлено до некоторой значащей цифры: если линейка «обычная», то у неё есть цена деления ; а если линейка, к примеру, «лазерная» — у неё высвечивается конечное число значащих цифр на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на самом деле такова хотя бы с точностью до ошибки округления. Действительно, мы могли приложить линейку не вполне ровно; сама линейка могла быть изготовлена не вполне точно; стержень может быть не идеально цилиндрическим и т.п.

  • И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной точности измерения, теряет смысл само понятие «длины стержня».
  • Ведь на масштабах атомов у стержня нет чётких границ, а значит говорить о его геометрических размерах в таком случае крайне затруднительно! Итак, из нашего примера видно, что никакое физическое измерение не может быть произведено абсолютно точно, то есть у любого измерения есть погрешность,
Читайте также:  Каковы Основные Способы Измерения?

Замечание. Также используют эквивалентный термин ошибка измерения (от англ. error). Подчеркнём, что смысл этого термина отличается от общеупотребительного бытового: если физик говорит «в измерении есть ошибка», — это не означает, что оно неправильно и его надо переделать.

Имеется ввиду лишь, что это измерение неточно, то есть имеет погрешность, Количественно погрешность можно было бы определить как разность между измеренным и «истинным» значением длины стержня: δ ⁢ x = x изм — x ист, Однако на практике такое определение использовать нельзя: во-первых, из-за неизбежного наличия погрешностей «истинное» значение измерить невозможно, и во-вторых, само «истинное» значение может отличаться в разных измерениях (например, стержень неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).

Поэтому говорят обычно об оценке погрешности. Об измеренной величине также часто говорят как об оценке, подчеркивая, что эта величина не точна и зависит не только от физических свойств исследуемого объекта, но и от процедуры измерения. Замечание. Термин оценка имеет и более формальное значение.

В чем измеряется погрешность измерений?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины. Инструментальные и методические погрешности. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Чему равна приведенная погрешность прибора?

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.

Как определить инструментальную погрешность прибора?

Вычисление погрешностей измерений Выполнение лабораторных работ связано с измерением физических величин, т.е. определением значений величин опытным путём с помощью измерительных приборов (средств измерения), и обработкой результатов измерений. Различают прямые и косвенные измерения.

Читайте также:  Как Проводить Поверку Весов?

При этом результат любого измерения является приблизительным, т.е. содержит погрешность измерения. Точность измерения физической величины характеризуют абсолютная и относительная погрешности. Прямое измерение — определение значения физической величины непосредственно с помощью измерительного прибора. Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δ x = Δ и x + Δ о x при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Абсолютная инструментальная погрешность Δ и x связана с классом точности прибора. Абсолютные инструментальные погрешности некоторых средств измерений представлены в таблице 1.

Таблица 1

Средства измерений Диапазон измерений Абсолютная инструментальная погрешность
Линейки: металлические деревянные пластмассовые 150, 300, 500 мм 400, 500, 750 мм 200, 250, 300 мм 0,1 мм 0,5 мм 1 мм
Лента измерительная 150 см 0,5 см
Мензурки 2-го класса 100, 200, 250 см 3 5 см 3
Амперметр школьный 2 А 0,05 А
Миллиамперметр от 0 до I max 4 % максимального предела измерений I max
Вольтметр школьный 6 В 0,15 В
Термометр лабораторный 100 °С 1 °С
Барометр-анероид 720–780 мм рт. ст. 3 мм рт. ст.
Штангенциркули с ценой деления 0,1; 0,05 мм 155, 250, 350 мм 0,1; 0,05 мм в соответствии с ценой деления нониуса
Микрометры с ценой деления 0,01 мм 0–25, 25–50, 50–75 мм 0,004 мм

Абсолютная погрешность отсчёта Δ о x связана с дискретностью шкалы прибора. Если величину измеряют с точностью до целого деления шкалы прибора, то погрешность отсчёта принимают равной цене деления. Если при измерении значение величины округляют до половины деления шкалы, то погрешность отсчёта принимают равной половине цены деления. Относительную погрешность прямого измерения определяют отношением абсолютной погрешности к значению измеряемой величины: Относительная погрешность характеризует точность измерения: чем она меньше, тем точность измерения выше.

Как оценивается приборная погрешность?

Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм. Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора.

Как определить абсолютную погрешность измерительного прибора?

Абсолютная погрешность косвенных измерений определяется по формуле ΔA=A пр ε (ε выражается десятичной дробью).

Как найти абсолютную погрешность пример?

Абсолютная погрешность — Абсолютной погрешностью числа называют разницу между этим числом и его точным значением. Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26. Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

  1. Существует формула абсолютной погрешности.
  2. Обозначим точное число буквой А, а буквой а – приближение к точному числу.
  3. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях.
  4. Тогда формула будет выглядеть следующим образом: Δа=А-а.
  5. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой.

Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения. Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см.

Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Для чего нужна погрешность измерений?

Каждое физическое измерение в исследованиях и промышленности сопровождается определенной погрешностью. Даже незначительные колебания в условиях окружающей среды могут влиять на измерение и вызывать отклонения, которые делают результат измерения ненадежным.

  1. Для получения правильных результатов измерений необходимо учитывать связанную с результатами погрешность.
  2. Погрешность измерений указывает на недостающую информацию о настоящем значении измеряемой величины.
  3. Она определяется параметром, выраженным в процентах и относящимся к результату измерения, который обозначает отклонение значений, которое обоснованно можно присвоить измеряемой величине на основе имеющейся информации.

Другими словами, это диапазон, в пределах которого с определенной вероятностью находится истинное значение измеряемой величины.

Для чего нужна погрешность измерения?

Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного.

  • Это отклонение принято называть ошибкой измерения.
  • В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный).
  • Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов,
Читайте также:  Какое Лабораторное Оборудование Относится К Средствам Измерения?

На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

  1. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений.
  2. Это полученное значение не является точным, а лишь наиболее вероятным.
  3. Поэтому в измерениях необходимо указывать, какова их точность,
  4. Для этого вместе с полученным результатом указывается погрешность измерений.

Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка). В 2004 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов.

Чему равна абсолютная погрешность?

При измерении каких-либо величин важным понятием является понятие о погрешности. Это связано с тем, что абсолютно точно измерить какую либо величину невозможно. Поэтому вводят понятие погрешности. Есть очень много видов погрешности, связанных с человеческим фактором или процессом измерения.

Как найти погрешность в математике?

Абсолютная погрешность — Абсолютной погрешностью числа называют разницу между этим числом и его точным значением. Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26. Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

  1. Существует формула абсолютной погрешности.
  2. Обозначим точное число буквой А, а буквой а – приближение к точному числу.
  3. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях.
  4. Тогда формула будет выглядеть следующим образом: Δа=А-а.
  5. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой.

Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения. Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см.

Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Как найти абсолютную погрешность в физике?

Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δx = Δ и x + Δ о x при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Как найти относительную погрешность математика?

Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее. Иначе говоря, надо найти модуль разности точного и приближенного значений. Этот модуль разности называют абсолютной погрешностью. Абсолютной погрешностью, или, короче, погрешностью приближенного числа, называется разность между этим числом и его точным значе нием (из большего числа вычитается меньшее).

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 – 1284 = 16. При округлении до 1280 абсолютная погрешность составляет 1284 – 1280 = 4. Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу.

Пример 2. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна \(\frac \) или, округленно, \(\frac \) = 1,5 %. В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности.

Чему равна относительная погрешность?

Относительная погрешность – это отношение абсолютной погрешности к самому числу. Относительную погрешность принято выражать в процентах, то есть, умножать полученное отношение на 100 %.