Можно Ли Устранить Прогрессирующие Погрешности?

Можно Ли Устранить Прогрессирующие Погрешности
Анализ причин появления погрешностей измерений, выбор способов их обнаружения и уменьшения являются основными этапами процесса измерений. Погрешности измерений, принято делить на систематические и случайные. В процессе измерений систематические и случайные погрешности проявляются совместно и образуют нестационарный случайный процесс.

  • Деление погрешностей на систематические и случайные является удобным приемом для их анализа и разработки методов уменьшения их влияния на результат измерения.
  • Рассмотрим способы обнаружения и исключения систематических погрешностей, поскольку они зависят от выбора метода измерений и его осуществелния.

По характеру изменения систематические погрешности делятся:

постоянные – погрешности, связанные с неточной градуировкой шкалы прибора, отклонением размера меры от номинального значения, неточным выбором моделей объектов. переменные – периодические – погрешность изменяющаяся по периодическому закону, например погрешность отсчета при определении времени по башенным часам, если смотреть на стрелку снизу, температурная погрешность от изменения температуры в течение суток и т.п. – прогрессирующие – погрешности монотонно изменяющиеся (увеличивающиеся или уменьшающиеся) в общем случае по сложному, обычно неизвестному закону. Прогрессирующие погрешности во многих случаях обусловлены старением элементов средств измерений и могут быть скорректированы при его периодической поверке.

По причине возникновения погрешности измерений разделяются на три основные группы:

методические – погрешности обусловленные неадекватностью принимаемых моделей реальным объектам, несовершенством методов измерений, упрощением зависимостей, положенных в основу измерений, неопределенностью объекта измерения; инструментальные – погрешности обусловленные прежде всего особенностями используемых в средствах измерений принципов и методов измерений, а также схемным, конструктивным и технологическим несовершенством средств измерений. взаимодейтствия – обусловлены взаимным влиянием средства измерений, объекта исследования и экспериментатора. Погрешности из-за взаимного влияния средства и объекта измерений обычно принято относить к методическим погрешностям, а погрешности, связанные с действиями экспериментатора, называются личными погрешностями. Однако такая классификация недостаточно полно отражает суть рассматриваемых погрешностей.

Выявление и устранение причин возникновения погрешностей – наиболее распространенный способ уменьшения всех видов систематических погрешностей. Примерами такого способа являются: термостатирование отдельных узлов или прибора в целом, а также проведение измерений в термостатированных помещениях для исключения температурной погрешности, применение экранов, фильтров и специальных цепей (например, эквипотенциальных цепей) для устранения погрешностей из-за влияния электромагнитных полей, наводок и токов утечек, применение стабилизированных источников питания.

Каким способом можно повысить точность измерения длин?

«На практике наиболее часто применяются следующие методы и способы повысить точность измерений: — 1) Замена менее точного средства измерений на более точное. При отсутствии более точного средства измерений его можно разработать. Данный способ повышения точности измерений используется, когда преобладает инструментальная составляющая погрешности измерений.

Для измерительных каналов на более точные заменяют только те средства измерений, погрешности которых преобладают при расчете суммарной погрешности канала.2) Выбор верхнего предела измерений средств измерений, для которых нормированы приведенные основная и дополнительная погрешности, таким, чтобы ожидаемые значения измеряемой величины находились в последней трети предела измерений.

Таким способом можно уменьшить относительную погрешность средств измерений.3) Ограничение условий применения средств измерений. Этим способом пользуются в случае доминирования дополнительных погрешностей средств измерений, которые возникают, например, при значительных отклонениях от нормальных значений температуры окружающего воздуха; при влиянии электромагнитных полей, вибрации и т.д.

В этих случаях уменьшают подобные влияния путем установки кондиционеров, защитных экранов от электромагнитного воздействия, амортизаторов для снижения вибрации.4) Индивидуальная градуировка средства измерений. Данный способ повышения точности измерений применяется в случае преобладания систематических составляющих погрешности средств измерений.

Систематические составляющие погрешности средств измерений (например, для термометров сопротивления и термопар) можно значительно уменьшить путем внесения в результаты измерений поправок, полученных при индивидуальной градуировке.5) Использование метода замещения.

С помощью такого метода исключают систематические погрешности. Он заключается в том, что после измерения измеряемая величина заменяется переменной образцовой мерой, значение которой подбирается таким образом, чтобы в измерительной схеме получить одинаковое показание прибора. При этом значение измеряемой величины принимается равным значению образцовой меры.

Пример: измерение электрического сопротивления на мосте постоянного тока.6) Внедрение способов контроля работоспособного состояния средств измерений в процессе их эксплуатации. Это мероприятие способствует выявлению, исключению или снижению метрологических отказов в средствах измерений.

  • Во многих случаях системы контроля работоспособности средств измерений в процессе эксплуатации эффективны без каких-либо ограничений на составляющие погрешности средств измерений и их случайный или систематический характер.7) Автоматизация измерительных процедур.
  • Такое мероприятие снижает трудоемкость измерений, способствует исключению субъективных погрешностей, возникающих при обработке диаграмм, вычислении промежуточных и конечных результатов измерений, приготовлении проб для анализов и других операций, выполняемых человеком.8) Использование метода обратного преобразования.

Метод используется для автоматической коррекции погрешности средств измерений.

Каким способом можно исключить систематические погрешности?

1. Исключение известных систематических погрешностей из результатов наблюдений или измерений выполняют введением поправок к этим результатам. Поправки по абсолютному значению равны этим погрешностям и противоположны им по знаку.2. Введением поправок исключают: — погрешность, возникающую из-за отклонений действительной температуры окружающей среды при измерении от нормальной; — погрешность, возникающую из-за отклонений атмосферного давления при измерении от нормального; — погрешность, возникающую из-за отклонений относительной влажности окружающего воздуха при измерении от нормальной; — погрешность, возникающую из-за отклонений относительной скорости движения внешней среды при измерении от нормальной; — погрешность, возникающую вследствие искривления светового луча (рефракции); — погрешность шкалы средства измерения; — погрешность, возникающую вследствие несовпадения направлений линии измерения и измеряемого размера.3. 4. Поправки могут не вноситься, если действительная погрешность измерения не превышает предельной. Пример. Получен результат измерения длины стальной фермы xi = 24003 мм. Измерение выполнялось 30-метровой рулеткой из нержавеющей стали при t = -20 °С. При этом a1 = 20,5·10-6, a2 = 12,5·10-6, t1 = t2 = -20°С. Действительную длину xi фермы с учетом поправки на температуру окружающей среды следует принять равной Распечатать

Читайте также:  Что Является Результатом Измерений?

Что влияет на погрешность результатов измерений?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

  • Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.
  • Инструментальные и методические погрешности.
  • Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях.
  • Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Чем определяется погрешность результата измерения?

На практике используют действительное значение величины x Д,в результате чего погрешность измерения Dx ИЗМ определяют по формуле: Dx ИЗМ = x ИЗМ — x Д, где x ИЗМ – измеренное значение величины. Синонимом термина погрешность измерения является термин ошибка измерения, применять который не рекомендуется как менее удачный.

Почему возникают погрешности измерений?

Они возникают из-за конечной точности приборов, ошибок определения, влияния многих случайных факторов, неправильно выбранного способа измерений (систематических ошибок).

Сколько видов погрешности?

1) систематические погрешности ; 2) случайные погрешности. В процессе измерения могут также появиться грубые погрешности и промахи. Систематическая погрешность — это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины.

Можно ли исключить случайную погрешность?

Случайные погрешно- сти служат причиной разброса результатов повторных измерений относительно истинного значения измеряемой величины. (хотя это может оказаться очень сложной задачей), то исключить случайные погрешности нельзя.

Что такое случайная погрешность?

Случайная погрешность — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью.

Откуда появляются методические погрешности?

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Для чего нужна погрешность?

Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного.

  • Это отклонение принято называть ошибкой измерения.
  • В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный).
  • Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов,
Читайте также:  В Чем Измеряют Длину?

На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

  1. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений.
  2. Это полученное значение не является точным, а лишь наиболее вероятным.
  3. Поэтому в измерениях необходимо указывать, какова их точность,
  4. Для этого вместе с полученным результатом указывается погрешность измерений.

Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка). В 2004 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов.

Как определить погрешность?

По форме представления — Первый тип — абсолютная погрешность. Она представляет собой алгебраическую разность между реальным и номинальными значениями. Она регистрируется в тех же величинах, что и основной объект. В расчетах абсолютный показатель помечается буквой ∆.

Например, линейка — наиболее простой и привычный каждому измерительный инструмент. При помощи верхней шкалы на ней определяются значения с точностью до миллиметра. Нижняя имеет другой масштаб (до 0,1 дюйма–2,54 мм). Несложно проверить, что на этом приборе погрешность верхней части меньше, чем нижней. Точность измерений в случае с линейкой будет зависеть от ее конструктивных особенностей.

Абсолютная погрешность измеряется той же единицей измерений, что и изучаемая величина. В процессе используется формула: Δ = х1 – х2, где х1 — измеренная величина, а х2 — реальная величина. Второй тип – относительная погрешность (проявляется в виде отношение абсолютного и истинного значения).

Показатель не имеет собственной единица измерения или отражается процентно. В расчетах помечается как δ. Она является более сложным значением, чем может показаться. В расчетах используется формула: δ = (Δ / х2)·100 % Стоит отметить, что если истинное значение имеет малую величину, то относительная — большую.

Например, если стандартной линейкой (30 см) измеряется коробки (150 мм), то вычисление будет иметь вид: δ = 1 мм/150 мм = 0,66%. Если этот же прибор использовать для экрана смартфона (80 мм), то получится δ = 1 мм/80 мм = 1,25%. Получается, что в обоих случаях абсолютная погрешность не изменяется, но относительная отличается в разы.

Во втором случае рекомендуется использовать более точный прибор. Последний тип — приведенная погрешность. Она используется, чтобы не допустить такого разброса на одном приборе. Работает, как относительная, но вместо истинного значения в формуле применяется нормирующая шкала (общая длина линейки, например).

γ = (Δ / х3)·100 %, где х3 — это нормирующая шкала Например, если потребуется измерить ту же коробку и смартфон, то придется учесть абсолютную величину в 1мм и приведенную погрешность — 1/300*100 =0,33 %. Если взять швейный метр и сравнить его с линейкой, то получится, что первый показатель в обоих случаях остается 1 мм, а второй отличается в разы (0,33% и 0,1%).

Что характеризует погрешность?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

  • Это отклонение принято называть ошибкой измерения,
  • Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов,
  • На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %. Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Сколько раз нужно повторять одинаковые измерения?

В физике и технике не существует абсолютно точных измерительных приборов, следовательно, нет и абсолютно точных результатов измерения. Поэтому, числовые значения всех физических величин являются приближенными, то есть, измеряются с погрешностями и, поэтому любые измерения необходимо повторить два — три раза!

Зачем нужно учитывать погрешность при измерениях?

Каждое физическое измерение в исследованиях и промышленности сопровождается определенной погрешностью. Даже незначительные колебания в условиях окружающей среды могут влиять на измерение и вызывать отклонения, которые делают результат измерения ненадежным.

Для получения правильных результатов измерений необходимо учитывать связанную с результатами погрешность. Погрешность измерений указывает на недостающую информацию о настоящем значении измеряемой величины. Она определяется параметром, выраженным в процентах и относящимся к результату измерения, который обозначает отклонение значений, которое обоснованно можно присвоить измеряемой величине на основе имеющейся информации.

Другими словами, это диапазон, в пределах которого с определенной вероятностью находится истинное значение измеряемой величины.

Читайте также:  Что Устанавливает Технический Регламент?

Как определить точность?

1. Оценку точности измерений производят — предварительно до начала измерений путем обработки результатов специально выполненных наблюдений; — после окончания измерений путем обработки результатов наблюдений, выполненных в процессе этих измерений.2. Для оценки точности измерений используют многократные наблюдения параметра в одном из установленных сечений (мест) или двойные наблюдения параметра в разных сечениях (местах) одного или нескольких объектов измерений.

Общее число наблюдений М, необходимое для оценки точности результата измерений, составляет: для предварительной оценки — 20; для оценки точности выполненных измерений — не менее 6. Для уменьшения влияния систематических погрешностей измерения выполняют в соответствии с требованиями настоящего стандарта (ГОСТ 26433.0-85): Наблюдения производят в прямом и обратном направлениях, на разных участках шкалы отсчетного устройства, меняя установку и настройку прибора и соблюдая другие приемы, указанные в инструкции по эксплуатации на средства измерения.

При этом должны быть соблюдены условия равноточности наблюдений (выполнение наблюдений одним наблюдателем, тем же методом, с помощью одного и того же прибора и в одинаковых условиях). Перед началом наблюдений средства измерений следует выдерживать на месте измерений до выравнивания температур этих средств и окружающей среды.3. Таблица 1. Среднюю квадратическую погрешность измерения при многократных наблюдениях параметра определяют по формуле Если при измерениях используются средства и методы, для которых из специально выполненных ранее измерений или из эксплуатационной документации установлена средняя квадратическая погрешность наблюдения, то действительную погрешность измерения определяют по формуле 5. Действительную погрешность результата измерения при двойных наблюдениях параметра в одном из установленных сечений (местах) оценивают по формуле где вычисляемая величина — это абсолютное значение остаточной систематической погрешности, численное значение которой определено из обработки ряда двойных наблюдений.

Что такое точность в метрологии?

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений. Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным.

Точность количественно оценивают обратной величиной модуля относительной погрешности. Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000. Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики.

Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ. Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей. Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:

неверная настройка средства измерений или смещение уровня настройки во время эксплуатации; неверная установка объекта измерения на измерительную позицию; ошибки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений; внешние воздействия на средство и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.п.); свойства измеряемого объекта; квалификация и состояние оператора.

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.

В чем заключается единство измерений?

Единство измерений — состояние измерений, при котором их результаты выражены в допущенных к применению в Российской Федерации единицах величин, а показатели точности измерений не выходят за установленные границы. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах и в разное время, с использованием разных методов и средств измерений,

Правовой основой обеспечения единства измерений служит законодательная метрология, которая представляет собой свод государственных актов и нормативно-технических документов различного уровня, регламентирующих метрологические правила, требования и нормы. Определение понятия «единство измерений» довольно ёмкое.

Оно охватывает важнейшие задачи метрологии : унификацию единиц, разработку систем воспроизведения единиц и передачи их размеров рабочим средствам измерений с установленной точностью, проведение измерений с погрешностью, не превышающей установленные пределы и др.