Сколько Раз Нужно Повторять Одинаковые Измерения?

Сколько Раз Нужно Повторять Одинаковые Измерения
В физике и технике не существует абсолютно точных измерительных приборов, следовательно, нет и абсолютно точных результатов измерения. Поэтому, числовые значения всех физических величин являются приближенными, то есть, измеряются с погрешностями и, поэтому любые измерения необходимо повторить два — три раза!

Какая погрешность определяется при повторных измерениях?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины. Инструментальные и методические погрешности. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Зачем нужны многократные измерения?

1.3 Классификация погрешностей — Чтобы лучше разобраться в том, нужно ли многократно повторять измерения, и в каком случае это позволит улучшить результаты опыта, проанализируем источники и виды погрешностей. В первую очередь, многократные измерения позволяют проверить воспроизводимость результатов: повторные измерения в одинаковых условиях, должны давать близкие результаты.

Читайте также:  Какие Есть Цифровые Приборы?

В противном случае исследование будет существенно затруднено, если вообще возможно. Таким образом, многократные измерения необходимы для того, чтобы убедиться как в надёжности методики, так и в существовании измеряемой величины как таковой. При любых измерениях возможны грубые ошибки — промахи ( англ.

miss). Это «ошибки» в стандартном понимании этого слова — возникающие по вине экспериментатора или в силу других непредвиденных обстоятельств (например, из-за сбоя аппаратуры). Промахов, конечно, нужно избегать, а результаты таких измерений должны быть по возможности исключены из рассмотрения.

  1. Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма непрост.
  2. В литературе существуют статистические критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем пользоваться (по крайней мере, без серьезного понимания последствий такого отбора).
  3. Отбрасывание аномальных данных может, во-первых, привести к тенденциозному искажению результата исследований, а во-вторых, так можно упустить открытие неизвестного эффекта.

Поэтому при научных исследованиях необходимо максимально тщательно проанализировать причину каждого промаха, в частности, многократно повторив эксперимент. Лишь только если факт и причина промаха установлены вполне достоверно, соответствующий результат можно отбросить.

  1. Замечание.
  2. Часто причины аномальных отклонений невозможно установить на этапе обработки данных, поскольку часть информации о проведении измерений к этому моменту утеряна.
  3. Единственным способ борьбы с этим — это максимально подробное описание всего процесса измерений в лабораторном журнале,
  4. Подробнее об этом см.п.4.1.1,

При многократном повторении измерении одной и той же физической величины погрешности могут иметь систематический либо случайный характер. Назовём погрешность систематической, если она повторяется от опыта к опыту, сохраняя свой знак и величину, либо закономерно меняется в процессе измерений.

  • • инструментальные (или приборные ) погрешности, связанные с несовершенством конструкции (неточности, допущенные при изготовлении или вследствие старения), ошибками калибровки или ненормативными условиями эксплуатации измерительных приборов;
  • • методические погрешности, связанные с несовершенством теоретической модели явления (использование приближенных формул и моделей явления) или с несовершенством методики измерения (например, влиянием взаимодействия прибора и объекта измерения на результат измерения);
  • • естественные погрешности, связанные со случайным характером измеряемой физической величины — они являются не столько «ошибками» измерения, сколько характеризуют природу изучаемого объекта или явления.

    Как рассчитать точность измерения?

    Физические величины и погрешности их измерений — Задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Сразу оговоримся, что при выборе измерительного оборудования часто нужно также знать диапазон измерения и какое именно значение интересует: например, среднеквадратическое значение (СКЗ) измеряемой величины в определённом интервале времени, или требуется измерять среднеквадратическое отклонение (СКО) (для измерения переменной составляющей величины), или требуется измерять мгновенное (пиковое) значение.

    При измерении переменных физических величин (например, напряжение переменного тока) требуется знать динамические характеристики измеряемой физической величины: диапазон частот или максимальную скорость изменения физической величины, Эти данные, необходимые при выборе измерительного оборудования, зависят от физического смысла задачи измерения в конкретном физическом эксперименте,

    Итак, повторимся: задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Эта задача решается с помощью прямых или косвенных измерений, При прямом измерении осуществляется количественное сравнение физической величины с соответствующим эталоном при помощи измерительных приборов.

    1. Отсчет по шкале прибора указывает непосредственно измеряемое значение.
    2. Например, термометр дает значения измеряемой температуры, а вольтметр – значение напряжения.
    3. При косвенных измерениях интересующая нас физическая величина находится при помощи математических операций над непосредственно измеренными физическими величинами (непосредственно измеряя напряжение U на резисторе и ток I через него, вычисляем значение сопротивления R = U / I ).

    Точность прямых измерений некоторой величины X оценивается величиной погрешности или ошибки, измерений относительно действительного значения физической величины X Д, Действительное значение величины X Д (согласно РМГ 29-99 ) – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

    Различают абсолютную (∆ X) и относительную (δ) погрешности измерений. Абсолютная погрешность измерения – это п огрешность средства измерений, выраженная в единицах измеряемой физической величины, характеризующая абсолютное отклонение измеряемой величины от действительного значения физической величины: ∆X = X – X Д,

    Относительная погрешность измерения – это п огрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному значению измеряемой величины. Обычно относительную погрешность выражают в процентах: δ = (∆X / Xд) * 100%, При оценке точности косвенных измерений некоторой величины X 1, функционально связанной с физическими величинами X 2, X 3,, X 1 = F (X 2, X 3, ), учитывают погрешности прямых измерений каждой из величин X 2, X 3, и характер функциональной зависимости F (),

    Как оценивается точность результата измерения?

    1. Оценку точности измерений производят — предварительно до начала измерений путем обработки результатов специально выполненных наблюдений; — после окончания измерений путем обработки результатов наблюдений, выполненных в процессе этих измерений.2. Для оценки точности измерений используют многократные наблюдения параметра в одном из установленных сечений (мест) или двойные наблюдения параметра в разных сечениях (местах) одного или нескольких объектов измерений.

    Общее число наблюдений М, необходимое для оценки точности результата измерений, составляет: для предварительной оценки — 20; для оценки точности выполненных измерений — не менее 6. Для уменьшения влияния систематических погрешностей измерения выполняют в соответствии с требованиями настоящего стандарта (ГОСТ 26433.0-85): Наблюдения производят в прямом и обратном направлениях, на разных участках шкалы отсчетного устройства, меняя установку и настройку прибора и соблюдая другие приемы, указанные в инструкции по эксплуатации на средства измерения.

    При этом должны быть соблюдены условия равноточности наблюдений (выполнение наблюдений одним наблюдателем, тем же методом, с помощью одного и того же прибора и в одинаковых условиях). Перед началом наблюдений средства измерений следует выдерживать на месте измерений до выравнивания температур этих средств и окружающей среды.3. Таблица 1. Среднюю квадратическую погрешность измерения при многократных наблюдениях параметра определяют по формуле Если при измерениях используются средства и методы, для которых из специально выполненных ранее измерений или из эксплуатационной документации установлена средняя квадратическая погрешность наблюдения, то действительную погрешность измерения определяют по формуле 5. Действительную погрешность результата измерения при двойных наблюдениях параметра в одном из установленных сечений (местах) оценивают по формуле где вычисляемая величина — это абсолютное значение остаточной систематической погрешности, численное значение которой определено из обработки ряда двойных наблюдений.

    Какой может быть погрешность?

    По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные. Абсолютная погрешность — это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

    Почему может быть погрешность?

    Погрешность возникает из-за видимого изменения относительных положений отметок шкалы вследствие перемещения глаза наблюдателя — погрешность параллакса. Погрешность поверки — составляющая погрешности измерений, являющаяся следствием несовер-шенства поверки средств измерений.

    Что такое допустимая погрешность измерения?

    Погрешность является одной из наиболее важных метрологических характеристик средства измерений (технического средства, предназначенного для измерений). Она соответствует разнице между показаниями средства измерений и истинным значением измеряемой величины.

    • Чем меньше погрешность, тем более точным считается средство измерений, тем выше его качество.
    • Наибольшее возможное значение погрешности для определенного типа средств измерений при определенных условиях (например, в заданном диапазоне значений измеряемой величины) называется пределом допускаемой погрешности.

    Обычно устанавливают пределы допускаемой погрешности, т.е. нижнюю и верхнюю границы интервала, за которые не должна выходить погрешность. Как сами погрешности, так и их пределы, принято выражать в форме абсолютных, относительных или приведенных погрешностей.

    1. Конкретная форма выбирается в зависимости от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений.
    2. Абсолютную погрешность указывают в единицах измеряемой величины, а относительную и приведённую — обычно в процентах.
    3. Относительная погрешность может характеризовать качество средства измерения гораздо более точно, чем приведённая, о чем будет рассказано далее более подробно.

    Связь между абсолютной (Δ), относительной (δ) и приведённой (γ) погрешностями определяется по формулам: δ=Δ/Х (1) γ=Δ/Х N (2) где X — значение измеряемой величины, X N — нормирующее значение, выраженное в тех же единицах, что и Δ. Критерии выбора нормирующего значения X N устанавливаются ГОСТ 8.401-80 в зависимости от свойств средства измерений, и обычно оно должно быть равно пределу измерений (X K ), т.е.

    Γ=Δ/Х K (3) Пределы допускаемых погрешностей рекомендуется выражать в форме приведённых в случае, если границы погрешностей можно полагать практически неизменными в пределах диапазона измерений (например, для стрелочных аналоговых вольтметров, когда границы погрешности определяются в зависимости от цены деления шкалы, независимо от значения измеряемого напряжения).

    В противном случае рекомендуется выражать пределы допускаемых погрешностей в форме относительных согласно ГОСТ 8.401-80. Однако на практике выражение пределов допускаемых погрешностей в форме приведённых погрешностей ошибочно используется в случаях, когда границы погрешностей никак нельзя полагать неизменными в пределах диапазона измерений.