Каким Образом Обеспечивается Качество Результатов Измерений?

Каким Образом Обеспечивается Качество Результатов Измерений
В соответствии с положениями теоретической метрологии измерение может выполняться с использованием шкалы порядка (уровней), шкалы интервалов и шкалы отношений. Во втором и третьем случаях результат измерения является случайной величиной и может записываться выражением: где X — показание средства измерения; — поправка. Величина Х характеризует правильность показаний, а поправка — точность измерений. По этим параметрам измерительная техника разделяется на классы точности в соответствии с допускаемой погрешностью измерений. Приведенная погрешность измеряется в процентах от верхнего предела измерений, относительная погрешность — то результата самого показания.

Используется ряд классов точности, в том числе: 0.1, 0.2, 0.5, 1.0, 1.5, 2.5, 4.0. Характеристикой класса является относительная погрешность, указываемая в процентах: 0.1, 0.5, 4.0. Правильность результата измерения обеспечивается совпадением среднего значения измерений со значением измеряемой величины.

Значение Х — величина случайная, поправка не является случайной, она характеризует относительную погрешность измерения. На рис.1 показано распределение плотности вероятности при точных измерениях (1) и менее точных (2). Рис.1 Распределение плотности вероятности при двух классах точности измерений Если значение поправки с течением времени не меняется, то при многократном измерении постоянного размера одним и тем же средством измерений (в одинаковых условиях) получим: где — средний арифметический результат измерений; n — количество измерений; — среднее значение показания при измерении; — значение поправки; = const. Это выражение показывает, что точность многократного измерения выше, но правильность такая же, как и при однократном измерении. Пример 1. При метрологической аттестации вольтметра в нормальных условиях выполнено 100 измерений образцового напряжения в различных точках шкалы. Установлено, что распределение вероятности с дисперсией напряжение равно 1,5В. Смещение среднеарифметического значения в сторону меньших значений с вероятностью 0,95 достигает 0,3В.

Какие признаки определяют качество измерений?

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений. Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным.

  1. Точность количественно оценивают обратной величиной модуля относительной погрешности.
  2. Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.
  3. Достоверность измерений характеризует степень доверия к результатам измерений.
  4. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики.

Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ. Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей. Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:

неверная настройка средства измерений или смещение уровня настройки во время эксплуатации; неверная установка объекта измерения на измерительную позицию; ошибки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений; внешние воздействия на средство и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.п.); свойства измеряемого объекта; квалификация и состояние оператора.

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.

Чем характеризуется точность результата измерений?

То́чность измере́ний, точность результата измерения — близость измеренного значения к истинному значению измеряемой величины, Точность измерений описывает качество измерений в целом, объединяя понятия правильность измерений и прецизионность измерений,

Как выражается точность измерений?

Терминология и требования к точности методов и результатов измерений регламентированы в комплексе из шести государственных стандартов РФ – ГОСТ Р ИСО 5725 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений», введенных в действие в 2002 году (далее Стандарт 5725).

Читайте также:  Что Такое Рабочее Средство Измерения?

Стандарты ГОСТ Р ИСО являются переводом с английского языка международных стандартов ИСО 5725:1994. Слово «метод» в Стандарте 5725 охватывает и собственно метод измерений и методику их выполнения и должно трактоваться в том или ином смысле (или в обоих смыслах) в зависимости от контекста. Поскольку Стандарт 5725 указывает, каким образом можно обеспечить необходимую точность измерения, в принципе становится возможным сравнивать по точности различные методы измерений, методики их выполнения, организации (лаборатории) и персонал (операторов), осуществляющих измерения.

Появление Стандарта 5725 было вызвано возрастанием роли рыночных стимулов к качественному выполнению измерений, данный стандарт даёт ответы на такие острые вопросы, как: что такое качество измерений и как его измерять; можно ли определить, насколько при измерении той или иной величины один метод (методика) совершеннее другого или одна испытательная организация лучше другой; в какой степени следует доверять измеренным и зафиксированным значениям; и т.п.

В отечественной метрологии погрешность результатов измерений, как правило, определяется сравнением результата измерений с истинным или действительным значением измеряемой величины. Истинное значение – значение, которое идеальным образом характеризует в качественном и количественном отношении соответствующую величину.

Действительное значение – значение величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. В условиях отсутствия необходимых эталонов, обеспечивающих воспроизведение, хранение и передачу соответствующих значений величин, необходимых для определения погрешности (точности) результатов измерений, в отечественной и международной практике за действительное значение зачастую принимают общее среднее значение (математическое ожидание) заданной совокупности результатов измерений, выражаемое в отдельных случаях в условных единицах.

  1. Эта ситуация и отражена в термине «принятое опорное значение» и рекомендуется для использования в отечественной практике.
  2. Понятие принятого опорного значения является более универсальным, чем понятие «действительное значение».
  3. Оно определяется не только как условно истинное значение измеряемой величины через теоретические константы и (или) эталоны, но и (в их отсутствии) как ее среднее значение по большому числу предварительно выполненных измерений в представительном множестве лабораторий.

Таким образом, принятым опорным значением может быть как эталонное, так и среднее значение измеряемой характеристики. Точность – степень близости результата измерений к принятому опорному значению. В рамках обеспечения единства измерений вводится термин «правильность» – степень близости к принятому опорному значению среднего значения серии результатов измерений.

Как оценивают точность средств измерений?

1. Оценку точности измерений производят — предварительно до начала измерений путем обработки результатов специально выполненных наблюдений; — после окончания измерений путем обработки результатов наблюдений, выполненных в процессе этих измерений.2. Для оценки точности измерений используют многократные наблюдения параметра в одном из установленных сечений (мест) или двойные наблюдения параметра в разных сечениях (местах) одного или нескольких объектов измерений.

  1. Общее число наблюдений М, необходимое для оценки точности результата измерений, составляет: для предварительной оценки — 20; для оценки точности выполненных измерений — не менее 6.
  2. Для уменьшения влияния систематических погрешностей измерения выполняют в соответствии с требованиями настоящего стандарта (ГОСТ 26433.0-85): Наблюдения производят в прямом и обратном направлениях, на разных участках шкалы отсчетного устройства, меняя установку и настройку прибора и соблюдая другие приемы, указанные в инструкции по эксплуатации на средства измерения.

При этом должны быть соблюдены условия равноточности наблюдений (выполнение наблюдений одним наблюдателем, тем же методом, с помощью одного и того же прибора и в одинаковых условиях). Перед началом наблюдений средства измерений следует выдерживать на месте измерений до выравнивания температур этих средств и окружающей среды.3. Таблица 1. Среднюю квадратическую погрешность измерения при многократных наблюдениях параметра определяют по формуле Если при измерениях используются средства и методы, для которых из специально выполненных ранее измерений или из эксплуатационной документации установлена средняя квадратическая погрешность наблюдения, то действительную погрешность измерения определяют по формуле 5. Действительную погрешность результата измерения при двойных наблюдениях параметра в одном из установленных сечений (местах) оценивают по формуле где вычисляемая величина — это абсолютное значение остаточной систематической погрешности, численное значение которой определено из обработки ряда двойных наблюдений.

Читайте также:  Как Найти Допускаемую Абсолютную Погрешность?

Какие способы обеспечивают единство измерений?

1. на основе использования возможностей ядерной физики; 2. использованием допущенных законодательным порядком единиц физических величин, а точность измерений находится в пределах допустимых значений; + 3. созданием сравнительно недорогих квантовых эталонов и рабочих средств измерений.

Что такое результат измерения и чем он характеризуется?

Результат измерения физической величины — значение величины, полученное путем ее измерения – установленное значение величины, характеризующей свойство физического объекта, представляемое действительным числом с принятой размерностью (размерность определяется выбранной единицей измерений );

Что такое правильность измерений?

Правильность измерений – это близость среднего арифметического бесконечно большого числа повторно измеренных значений величины к опорному значению величины. Правильность измерений не является величиной и поэтому не может быть выражена численно, однако соответствующие показатели приведены в ISO 5725.

Как погрешность характеризует качество измерения?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

Это отклонение принято называть ошибкой измерения, Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов, На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

  • Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
  • Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Как оценить ошибку измерений?

1.1 Результат измерения — Рассмотрим простейший пример: измерение длины стержня с помощью линейки. Линейка проградуирована производителем с помощью некоторого эталона длины — таким образом, сравнивая длину стержня с ценой деления линейки, мы выполняем косвенное сравнение с общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат x = x изм, Можно ли утверждать, что x изм — это длина стержня? Во-первых, значение x не может быть задано точно, хотя бы потому, что оно обязательно округлено до некоторой значащей цифры: если линейка «обычная», то у неё есть цена деления ; а если линейка, к примеру, «лазерная» — у неё высвечивается конечное число значащих цифр на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на самом деле такова хотя бы с точностью до ошибки округления. Действительно, мы могли приложить линейку не вполне ровно; сама линейка могла быть изготовлена не вполне точно; стержень может быть не идеально цилиндрическим и т.п.

  1. И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной точности измерения, теряет смысл само понятие «длины стержня».
  2. Ведь на масштабах атомов у стержня нет чётких границ, а значит говорить о его геометрических размерах в таком случае крайне затруднительно! Итак, из нашего примера видно, что никакое физическое измерение не может быть произведено абсолютно точно, то есть у любого измерения есть погрешность,
Читайте также:  Что Делать Если Просрочил Срок Поверки Счетчиков Воды?

Замечание. Также используют эквивалентный термин ошибка измерения (от англ. error). Подчеркнём, что смысл этого термина отличается от общеупотребительного бытового: если физик говорит «в измерении есть ошибка», — это не означает, что оно неправильно и его надо переделать.

  • Имеется ввиду лишь, что это измерение неточно, то есть имеет погрешность,
  • Количественно погрешность можно было бы определить как разность между измеренным и «истинным» значением длины стержня: δ ⁢ x = x изм — x ист,
  • Однако на практике такое определение использовать нельзя: во-первых, из-за неизбежного наличия погрешностей «истинное» значение измерить невозможно, и во-вторых, само «истинное» значение может отличаться в разных измерениях (например, стержень неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).

Поэтому говорят обычно об оценке погрешности. Об измеренной величине также часто говорят как об оценке, подчеркивая, что эта величина не точна и зависит не только от физических свойств исследуемого объекта, но и от процедуры измерения. Замечание. Термин оценка имеет и более формальное значение.

Каким способом можно повысить точность измерений?

Повысить точность измерения можно, прибегая к следующим методам: замене средств измерений более точными; использованию более точной формулы измерений ; структурной информационной избыточности — тестовым методам; функциональной информационной избыточности.

Какая основная задача обработки результатов измерений?

Задача статистической обработки результатов многократных измерений заключается в нахождении оценки измеряемой величины и доверительного интервала, в котором находится истинное значение.

Что такое точность анализа?

Смотреть что такое «точность анализа» в других словарях: —

    точность анализа — analizės tikslumas statusas T sritis Standartizacija ir metrologija apibrėžtis Analizės charakteristika, apibūdinama visų rūšių paklaidų artumu nuliui. atitikmenys: angl. precision of analysis vok. Analyse Genauigkeit, f rus. точность анализа, f Penkiakalbis aiškinamasis metrologijos terminų žodynas точность анализа — analizės tikslumas statusas T sritis fizika atitikmenys: angl. precision of analysis vok. Analyse Genauigkeit, f rus. точность анализа, f pranc. précision de l’analyse, f Fizikos terminų žodynas Точность анализа химического — характеристика результатов качественного анализа (См. Качественный анализ) и количественного анализа (См. Количественный анализ), отражающая влияние на них случайных ошибок метода определения. Точность химических определений зависит от Большая советская энциклопедия Точность (в автоматич. управлении) — Точность системы автоматического управления, одна из важнейших характеристик систем автоматического управления (САУ), определяющая степень приближения реального управляемого процесса (УП) к требуемому. Отклонение УП от требуемого вызывается Большая советская энциклопедия точность фактов — (напр. представленных для анализа аварии на АЭС) Тематики энергетика в целом EN factual accuracy Справочник технического переводчика точность — 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической Словарь-справочник терминов нормативно-технической документации Точность — I Точность системы автоматического управления, одна из важнейших характеристик систем автоматического управления (См. Автоматическое управление) (САУ), определяющая степень приближения реального управляемого процесса (УП) к требуемому. Большая советская энциклопедия РМГ 61-2003: Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки — Терминология РМГ 61 2003: Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки: 3.12 внутрилабораторная прецизионность: Прецизионность Словарь-справочник терминов нормативно-технической документации РАДИОИНДИКАТОРНЫЕ МЕТОДЫ АНАЛИЗА — (РМА), методы качеств. и количеств. хим. анализа с использованием радионуклидов. Последние могут содержаться в исходном анализируемом в ве (напр., прир. радионуклиды таких элементов, как К, Th, U и др.), м.б. введены на определенном этапе Химическая энциклопедия нормы характеристик погрешности анализа; нормы погрешности — 3.23 нормы характеристик погрешности анализа; нормы погрешности: Значения характеристики погрешности результатов анализа, задаваемые в качестве требуемых или допускаемых. Примечание Нормы погрешности характеризуют требуемую точность анализа.