Что Влияет На Достоверность Измерений?

Что Влияет На Достоверность Измерений
Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений. Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным.

  • Точность количественно оценивают обратной величиной модуля относительной погрешности.
  • Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.
  • Достоверность измерений характеризует степень доверия к результатам измерений.
  • Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики.

Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ. Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей. Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:

неверная настройка средства измерений или смещение уровня настройки во время эксплуатации; неверная установка объекта измерения на измерительную позицию; ошибки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений; внешние воздействия на средство и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.п.); свойства измеряемого объекта; квалификация и состояние оператора.

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.

Что такое достоверность результатов измерений?

В нормативных документах по метрологии термин » достоверность измерений » встречается часто, но официально утвержденного определения данному термину не дано. Принято считать, что достоверность измерений — это характеристика, определяющая степень доверия к полученным результатам измерений.

  1. Согласно приведенному определению достоверность может иметь какую либо величину (степень), которая во первых, должна быть оценена на достаточность степени достоверности, во вторых — должны быть разарботаны методики проведения оценки достоверности результатов измерений.
  2. Федеральный закон 102-ФЗ от 26.06.2008 г.

«Об обеспечении единства измерений» содержит следующие положения относительно достоверности измерений:

  • ст.1 п.1 «Целями настоящего федерального закона является:,2) защита прав и законных интересов граждан, общества и государства от отрицательных последствий недостоверных результатов измерений»; 3) обеспечение потребности граждан, общества и государства в получении объективных, достоверных и сопоставимых результатов измерений,»;
  • ст.2 п.24 «технические требования к средствам измерений — требования, которые определяют особенности конструкции средств измерений (без ограничения их технического совершенствования) в целях сохранения их метрологических характеристик в процессе эксплуатации средств измерений, достижения достоверности результата измерений, предотвращения несанкционированных настройки и вмешательства, а также требования, обеспечивающие безопасность и электромагнитную совместимость средств измерений».

Таким образом, обеспечение достоверности измерений является одной из целей закона «Об обеспечении единства измерений». Процесс обеспечения достоверности измерений требует комплексного подхода, при котором будет обеспечено выполнение всех необходимых для достижения достоверности требований, а именно:

требования к измерениям: — измерения должны проводиться по аттестованным методикам; — применяемые средства измерений должны быть утвержденного типа; — применяемые средства измерений должны подтвердить установленные для них метрологические характеристики (быть поверены); — результаты измерений должны быть выражены в единицах, допущенных к применению в Российской Федерации.

Кроме этого, РМГ 29-2013 содержат следующее определение термина «измерение (величины)»:

«процесс эеспериментального получения одного или более значений величины, которые могут быть обоснованно приписаны величине».

Следовательно результат измерений можно считать достоверным только в случае наличия объективных данных, подтверждающих обоснованность присвоения полученного результата измерений. Основываясь на изложенных выше данных можно сделать следующие выводы:

  1. Достоверность измерений является целью и итогом комплекса действий, включающего в себя методы, средства и способы достижения поставленных целей.
  2. Согласно действующему законодательству предполагается, что при выполнении установленных норм и правил результаты измерений будут достоверными.
  3. Границы погрешности, приписанные результату измерений, не являются параметром, характеризующим его достоверность, но отсутствие сведений о приписанных методике или средству измерений границах погрешности не позволит подтвердить факт достоверности полученных результатов измерений и соответственно достоверности выводов, сделанных на основании результатов измерения.

Чем характеризуется точность измерений?

То́чность измере́ний, точность результата измерения — близость измеренного значения к истинному значению измеряемой величины, Точность измерений описывает качество измерений в целом, объединяя понятия правильность измерений и прецизионность измерений,

Каким образом обеспечивается качество результатов измерений?

Правильность результата измерения обеспечивается совпадением среднего значения измерений со значением измеряемой величины. Значение Х — величина случайная, поправка не является случайной, она характеризует относительную погрешность измерения.

Читайте также:  Что Такое Цифровые Приборы?

Что характеризует правильность измерений?

Термин ‘ правильность ‘ характеризует степень близости среднего арифметического значения большого числа результатов измерений к истинному или принятому опорному значению, термин ‘прецизионность’ — степень близости результатов измерений друг к другу.

Какая характеристика зависит от точности средств измерения?

Правильность измерения — это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность). Данная характеристика зависит, как правило, от точности средств измерений.

Каковы основные принципы измерения?

Измере́ние — совокупность действий для определения отношения одной (измеряемой) величины к другой однородной величине, принятой всеми участниками за единицу, хранящуюся в техническом средстве ( средстве измерений ). Числовым значением измеряемой величины называется число, получившееся в результате измерения.

  • Принцип измерений — физическое явление или эффект, положенный в основу измерений.
  • Метод измерений — приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность или неопределённость, Примеры измерений:

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов,

Почему может быть погрешность?

Погрешность возникает из-за видимого изменения относительных положений отметок шкалы вследствие перемещения глаза наблюдателя — погрешность параллакса. Погрешность поверки — составляющая погрешности измерений, являющаяся следствием несовер-шенства поверки средств измерений.

Какая погрешность характеризует точность измерений?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

Это отклонение принято называть ошибкой измерения, Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов, На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

  1. Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
  2. Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Как определить точность?

1. Оценку точности измерений производят — предварительно до начала измерений путем обработки результатов специально выполненных наблюдений; — после окончания измерений путем обработки результатов наблюдений, выполненных в процессе этих измерений.2. Для оценки точности измерений используют многократные наблюдения параметра в одном из установленных сечений (мест) или двойные наблюдения параметра в разных сечениях (местах) одного или нескольких объектов измерений.

  • Общее число наблюдений М, необходимое для оценки точности результата измерений, составляет: для предварительной оценки — 20; для оценки точности выполненных измерений — не менее 6.
  • Для уменьшения влияния систематических погрешностей измерения выполняют в соответствии с требованиями настоящего стандарта (ГОСТ 26433.0-85): Наблюдения производят в прямом и обратном направлениях, на разных участках шкалы отсчетного устройства, меняя установку и настройку прибора и соблюдая другие приемы, указанные в инструкции по эксплуатации на средства измерения.

При этом должны быть соблюдены условия равноточности наблюдений (выполнение наблюдений одним наблюдателем, тем же методом, с помощью одного и того же прибора и в одинаковых условиях). Перед началом наблюдений средства измерений следует выдерживать на месте измерений до выравнивания температур этих средств и окружающей среды.3. Таблица 1. Среднюю квадратическую погрешность измерения при многократных наблюдениях параметра определяют по формуле Если при измерениях используются средства и методы, для которых из специально выполненных ранее измерений или из эксплуатационной документации установлена средняя квадратическая погрешность наблюдения, то действительную погрешность измерения определяют по формуле 5. Действительную погрешность результата измерения при двойных наблюдениях параметра в одном из установленных сечений (местах) оценивают по формуле где вычисляемая величина — это абсолютное значение остаточной систематической погрешности, численное значение которой определено из обработки ряда двойных наблюдений.

Читайте также:  В Чем Измеряется Класс Точности?

Что отражает смещение измерений?

смещение, систематическая погрешность 3.1.11 смещение, систематическая погрешность (bias): Разность между математическим ожиданием результатов наблюдений и истинным, или (в его отсутствие) принятым опорным значением. Примечание 1 — Смещение характеризует систематическую ошибку или погрешность в противоположность случайным ошибке или погрешности.

Смещение может иметь одну или несколько составляющих. Большее систематическое отклонение от истинного или принятого опорного значения соответствует большему значению смещения. Примечание 2 — Смещение средства измерений обычно оценивают на основе среднего арифметического погрешностей в показаниях средства измерения, найденных по соответствующему количеству повторных измерений.

Погрешность показаний средства измерений — отклонение измеренного значения входной величины от ее истинного значения. Словарь-справочник терминов нормативно-технической документации, academic.ru,2015,

Каковы основные проблемы метрологии?

К основным задачам метрологии согласно РМГ 29-99 относят: установление единиц физических величин, государственных эталонов и образцовых средств измерений; — разработку теории, методов и средств измерений и контроля; — обеспечение единства измерений; — разработку методов оценки погрешностей, состояния средств —

Что такое результат измерения и чем он характеризуется?

Результат измерения – именованное число, найденное путем измерения физической величины. ( Результат измерения может быть принят за действительное значение измеряемой величины). Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины.

Что такое точность анализа?

Смотреть что такое «точность анализа» в других словарях: —

    точность анализа — analizės tikslumas statusas T sritis Standartizacija ir metrologija apibrėžtis Analizės charakteristika, apibūdinama visų rūšių paklaidų artumu nuliui. atitikmenys: angl. precision of analysis vok. Analyse Genauigkeit, f rus. точность анализа, f Penkiakalbis aiškinamasis metrologijos terminų žodynas точность анализа — analizės tikslumas statusas T sritis fizika atitikmenys: angl. precision of analysis vok. Analyse Genauigkeit, f rus. точность анализа, f pranc. précision de l’analyse, f Fizikos terminų žodynas Точность анализа химического — характеристика результатов качественного анализа (См. Качественный анализ) и количественного анализа (См. Количественный анализ), отражающая влияние на них случайных ошибок метода определения. Точность химических определений зависит от Большая советская энциклопедия Точность (в автоматич. управлении) — Точность системы автоматического управления, одна из важнейших характеристик систем автоматического управления (САУ), определяющая степень приближения реального управляемого процесса (УП) к требуемому. Отклонение УП от требуемого вызывается Большая советская энциклопедия точность фактов — (напр. представленных для анализа аварии на АЭС) Тематики энергетика в целом EN factual accuracy Справочник технического переводчика точность — 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической Словарь-справочник терминов нормативно-технической документации Точность — I Точность системы автоматического управления, одна из важнейших характеристик систем автоматического управления (См. Автоматическое управление) (САУ), определяющая степень приближения реального управляемого процесса (УП) к требуемому. Большая советская энциклопедия РМГ 61-2003: Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки — Терминология РМГ 61 2003: Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки: 3.12 внутрилабораторная прецизионность: Прецизионность Словарь-справочник терминов нормативно-технической документации РАДИОИНДИКАТОРНЫЕ МЕТОДЫ АНАЛИЗА — (РМА), методы качеств. и количеств. хим. анализа с использованием радионуклидов. Последние могут содержаться в исходном анализируемом в ве (напр., прир. радионуклиды таких элементов, как К, Th, U и др.), м.б. введены на определенном этапе Химическая энциклопедия нормы характеристик погрешности анализа; нормы погрешности — 3.23 нормы характеристик погрешности анализа; нормы погрешности: Значения характеристики погрешности результатов анализа, задаваемые в качестве требуемых или допускаемых. Примечание Нормы погрешности характеризуют требуемую точность анализа.

    В чем разница между точностью измерения и Прецизионностью?

    Прецизионность (precision) — это мера повторяемости или степень близости друг к другу результатов измерений. Точность (accuracy) — это степень близости результата измерений к цели (истинному значению). Конечно, для измерительного прибора важны как точность, так и прецизионность.

    Как можно повысить точность измерений?

    «На практике наиболее часто применяются следующие методы и способы повысить точность измерений: — 1) Замена менее точного средства измерений на более точное. При отсутствии более точного средства измерений его можно разработать. Данный способ повышения точности измерений используется, когда преобладает инструментальная составляющая погрешности измерений.

    Для измерительных каналов на более точные заменяют только те средства измерений, погрешности которых преобладают при расчете суммарной погрешности канала.2) Выбор верхнего предела измерений средств измерений, для которых нормированы приведенные основная и дополнительная погрешности, таким, чтобы ожидаемые значения измеряемой величины находились в последней трети предела измерений.

    Таким способом можно уменьшить относительную погрешность средств измерений.3) Ограничение условий применения средств измерений. Этим способом пользуются в случае доминирования дополнительных погрешностей средств измерений, которые возникают, например, при значительных отклонениях от нормальных значений температуры окружающего воздуха; при влиянии электромагнитных полей, вибрации и т.д.

    • В этих случаях уменьшают подобные влияния путем установки кондиционеров, защитных экранов от электромагнитного воздействия, амортизаторов для снижения вибрации.4) Индивидуальная градуировка средства измерений.
    • Данный способ повышения точности измерений применяется в случае преобладания систематических составляющих погрешности средств измерений.

    Систематические составляющие погрешности средств измерений (например, для термометров сопротивления и термопар) можно значительно уменьшить путем внесения в результаты измерений поправок, полученных при индивидуальной градуировке.5) Использование метода замещения.

    • С помощью такого метода исключают систематические погрешности.
    • Он заключается в том, что после измерения измеряемая величина заменяется переменной образцовой мерой, значение которой подбирается таким образом, чтобы в измерительной схеме получить одинаковое показание прибора.
    • При этом значение измеряемой величины принимается равным значению образцовой меры.

    Пример: измерение электрического сопротивления на мосте постоянного тока.6) Внедрение способов контроля работоспособного состояния средств измерений в процессе их эксплуатации. Это мероприятие способствует выявлению, исключению или снижению метрологических отказов в средствах измерений.

    Во многих случаях системы контроля работоспособности средств измерений в процессе эксплуатации эффективны без каких-либо ограничений на составляющие погрешности средств измерений и их случайный или систематический характер.7) Автоматизация измерительных процедур. Такое мероприятие снижает трудоемкость измерений, способствует исключению субъективных погрешностей, возникающих при обработке диаграмм, вычислении промежуточных и конечных результатов измерений, приготовлении проб для анализов и других операций, выполняемых человеком.8) Использование метода обратного преобразования.

    Метод используется для автоматической коррекции погрешности средств измерений.

    Что отражает смещение измерений?

    смещение, систематическая погрешность 3.1.11 смещение, систематическая погрешность (bias): Разность между математическим ожиданием результатов наблюдений и истинным, или (в его отсутствие) принятым опорным значением. Примечание 1 — Смещение характеризует систематическую ошибку или погрешность в противоположность случайным ошибке или погрешности.

    • Смещение может иметь одну или несколько составляющих.
    • Большее систематическое отклонение от истинного или принятого опорного значения соответствует большему значению смещения.
    • Примечание 2 — Смещение средства измерений обычно оценивают на основе среднего арифметического погрешностей в показаниях средства измерения, найденных по соответствующему количеству повторных измерений.

    Погрешность показаний средства измерений — отклонение измеренного значения входной величины от ее истинного значения. Словарь-справочник терминов нормативно-технической документации, academic.ru,2015,

    Что такое класс точности средств измерений?

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 мая 2018 года; проверки требуют 13 правок, Класс точности — обобщённая характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений.

    результату измерения (по относительной погрешности)

    в этом случае, по ГОСТ 8.401-80, цифровое обозначение класса точности (в процентах) заключается в кружок.

    длине (верхнему пределу) шкалы измерительного прибора (по приведенной погрешности).

    Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора.

    Так, для вольтметра, работающего в диапазоне измерений 0—30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений.

    При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1—0,5 В. Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора.

    Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее. Следует иметь в виду, что понятие класса точности встречается в различных областях техники.

    Так, в станкостроении имеется понятие класса точности металлорежущего станка, класса точности электроэрозионных станков (по ГОСТ 20551). Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков.

    Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений.

    Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.